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Abstract— Formation control is an essential research topic
in multi-agent systems (MAS), while the convergence speed of
formation is critically important for applications with real-time
performance requirements, such as rescuing tasks. However,
there is still a lack of effective methods for practically usable
formation control with controllable convergence speed. This
paper introduces a novel Laplacian function-based approach to
enhance the convergence speed of MAS in formation control.
By utilizing the Laplacian matrix of the communication graph,
eigenvalues are mapped to desired positions, thereby improving
the convergence speed of the formation process. Addition-
ally, this approach enables estimation and manipulation of
the convergence speed, offering flexibility and adaptability to
meet application-specific requirements. The proposed scheme is
experimentally validated through multiple quadrotors, demon-
strating its effectiveness and practical feasibility. Experimental
results show that the formation convergence speed can be well
controlled by appropriately designing the Laplacian functions.

I. INTRODUCTION

The field of robotics and biomimetics has witnessed an
increasing interest in multi-agent systems (MAS) due to
their versatility and potential in accomplishing complex
applications [1]–[3]. Formation control is a critical objective
in MAS that aims to achieve desired spatial arrangements
and patterns of a team of agents, as shown in Fig. 1. While
there are well-established achievements in the literature for
formation control [4]–[9], such as maintaining formation, op-
timizing resource allocation, enhancing collective decision-
making, etc., an important research question remains open
and unexplored: how quickly can the agents in the system
reach and maintain the desired formation configuration?

Generally, three problems should be well considered in
formation control. The first is the acquisition of locomotion
information. Formation control typically involves a combina-
tion of global and local information [10]. Global information
refers to knowledge about the desired formation shape and
positions in global coordinates [11], while local informa-
tion pertains to the agents’ states, such as attitudes and
velocities [4]. The second is the realization condition of the
formation task. Different environments, such as indoor sce-
narios with limited space and restricted maneuverability [12],
outdoor settings with varying weather conditions and open
spaces [13], or obstacle-cluttered environments with complex
surroundings [14], impose specific demands for successful
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Fig. 1: A multi-agent system composed of five quadrotors (a) and
the pentagon formation (b).

execution. Third, the achievable performance of avoidance
strategies [15], fault tolerance mechanisms [16], time-varying
formation adaptability [17], [18], communication delay [19],
and disturbance rejection techniques [20] should also be
taken into account.

Apart from the aforementioned problems, the convergence
speed is also critically important, particularly for real-time
applications. The convergence speed refers to how quickly
the agents can reach and maintain the desired formation
configuration. To enhance the convergence speed of forma-
tion control, two approaches can be considered. The first
approach is hardware-level improvements, such as utilizing
faster processors or advanced sensors. However, this ap-
proach inevitably increases cost or even technical constraints.
The second approach is to establish more interconnec-
tions [21], allowing for more effective information exchange
and coordination between agents. However, building more
connections may introduce additional communication costs
and increase computational complexity. Moreover, while
theoretical studies have addressed the problem of improving
the convergence speed in formation control using graph
theory [22], [23], practical implementations are still lacking.
This highlights the need to develop practical methods that
can enhance the convergence speed in formation tasks.

In light of the great necessity for controllable convergence
speed, our study focuses on the formation problem for a
MAS under an undirected communication graph. We pro-
pose a novel control method based on the functions of the
Laplacian matrix of the communication graph. By mapping
the eigenvalues of the Laplacian matrix to desired positions,
our aim is to achieve a faster convergence speed in the
formation process. Additionally, this approach enables us to
estimate and manipulate the convergence speed as desired,
offering flexibility and adaptability to meet application-
specific requirements. Finally, to investigate the practical
convergence speed of the formation strategy in 3D space,
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a group of quadrotors are chosen as representative agents
for the experimental tests.

The rest of this paper is organized as follows. Sec. II
provides an overview of graph theory concepts and intro-
duces the agent model. In Sec. III, Laplacian functions are
introduced, and the formation strategy designed based on
these functions is presented. Sec. IV presents several Lapla-
cian function design examples and evaluates their simulation
performance. The experiment results, which implement the
proposed approach using Crazyflie quadrotors, are discussed
in Sec. V. Finally, Sec. VI concludes the study.

II. PRELIMINARIES

In this section, we present a concise introduction to fun-
damental concepts in graph theory and the single-integrator
dynamics for the MAS considered in this paper, laying the
foundation for understanding the subsequent sections.

A. Graph Theory

In relation to formation control, the MAS can be described
by a graph G = (V, E), where V = {1, 2, 3, ..., N} denotes
the set of vertices representing the agents, and E ⊆ V × V
denotes the set of edges representing the connection between
the agents. This paper focuses on an unweighted and undi-
retcted graph without self-loops or multiple edges.

The topology of the graph can be mathematically de-
scribed by an adjacency matrix A ∈ RN×N :

A = {aij} : aij =

{
1, if (i, j) ∈ E
0, otherwise

, aii = 0

Here aij = 1 indicates a bidirectional connection between
the i- and j-th agents, while aij = 0 indicates no connection.

Additionally, we define a symmetric positive semi-definite
Laplacian matrix L of the graph G in the form:

L = {lij} : lij = −aij , for i ̸= j, lii =

N∑
j=1, j ̸=i

aij

It is worth mentioning that the Laplacian matrix L pos-
sesses a zero eigenvalue corresponding to the eigenvector
1N , where 1N is a N × 1 vector of ones. The off-
diagonal elements of L are non-positive. The eigenvalues
{λ1, λ2, ..., λN} of L are sorted in ascending order, with 0 =
λ1 < λ2 ≤ ... ≤ λN , and the corresponding orthonormal
eigenvectors are denoted as {v1,v2, ...,vN}, with v1 = 1N√

N
.

B. Agent Model

Consider a group of N agents, the dynamics of each agent
can be described using single-integrator equation:

q̇i(t) = ui(t), i ∈ V (1)

where qi(t) := [xi(t), yi(t)]
⊤ ∈ R2 represents the

global position of the i-th agent, and ui(t) ∈ R2 rep-
resents the control input. To simplify notation, we define
q(t) := [q⊤1 (t), q

⊤
2 (t), . . . , q

⊤
N (t)]⊤ ∈ R2N and u(t) :=

[u⊤
1 (t), u

⊤
2 (t), . . . , u

⊤
N (t)]⊤ ∈ R2N as the aggregated posi-

tion and input information of all agents, respectively.

III. LAPLACIAN FUNCTION-BASED FORMATION SCHEME

To enhance the convergence speed without increasing
computational complexity and cost, we present an innovative
approach to formation utilizing Laplacian functions in this
section. These functions, denoted as f(L), are designed as
functions of the eigenvalues of the Laplacian matrix L.

A. Laplacian Matrix Functions

To begin with, we introduce matrix functions f(L) associ-
ated with the Laplacian matrix L. These functions establish
matrices that include network structure details and facilitate
non-local interactions among agents. For simplicity, we use
fij(L) to refer to the (i, j)-th element of the matrix f(L).

Consider a scalar function f(x) : R → R, Laplacian
functions f(L) can be designed based on the spectral de-
composition of the Laplacian matrix L:

f(L) =
N∑
i=1

f(λi)viv
⊤
i (2)

Equation (2) illustrates that the determination of f(L)
involves computing the spectrum {λ1, λ2, . . . , λN} of L,
followed by the evaluation of {f(λ1), f(λ2), ..., f(λN )}
accordingly. The eigenvectors of f(L) remain unchanged
from those of L. Furthermore, it is noteworthy that the matrix
f(L) is symmetric in nature, as evident from equation (2).

It is important to mention that while equation (2) enables
the calculation of general functions of L, our focus here is
on functions that maintain the specific structure of the Lapla-
cian matrix, as discussed before. To maintain the desirable
characteristics, three rules need to be satisfied by f(L) [23].

Rule 1: f(L) needs to be positive semi-definite, ensuring
that the eigenvalues of f(L) are all positive or zero.

Rule 2: Each element fij(L) should meet
∑N

j=1 fij(L) =
0 for all i ∈ V , or equivalently f(L)1N = 0N , i.e. each row
sum of f(L) should be equal to zero.

Rule 3: The off-diagonal elements fij(L), i ̸= j, are
required to be non-positive and cannot all be zero simultane-
ously. Therefore, according to Rule 2, the diagonal entries
of f(L) should be strictly positive.

Further explanations on these design rules are provided.
Rule 1 holds true if the function f(x) satisfies f(x) ≥ 0
when x ≥ 0, ensuring that the eigenvalues of f(L) can be
arranged in ascending order like those of L. To verify Rule
2, by utilizing equation (2), we can check whether f(0) =
0. However, it is important to note that meeting the first
two rules does not necessarily guarantee that the off-diagonal
elements of f(L) are non-positive, as specified by Rule 3.

B. Laplacian Function-based Formation Scheme

Assuming the three design rules are satisfied, we can use
the Laplacian functions f(L) to devise a novel category of
continuous-time formation schemes:

u(t) =
(
−f(L)⊗ I2

)
·
(
q(t)− q∗) (3)
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where u(t) and q(t) are defined in Sec. II-B. q∗ ∈ R2N

represents the desired formation position, which remains
constant. This strategy drives N agents to a rotationally-
invariant formation encoded through the formation graph
G. By utilizing the spectral properties of the Laplacian
functions discussed in Sec. III-A, it has been proven that
for any initial condition q(0) ∈ R2N , the position vector
q(t) asymptotically converges to the target position q∗ if
the formation graph G is connected [24, Thm. 6.12].

C. Extension to Directed Communication Graph

While this paper primarily focuses on undirected graphs,
it is important to consider practical applications, especially
in hardware experiments. In such cases, when two agents in
an undirected graph are connected, they have access to each
other’s states, such as position and velocity. However, this
can lead to increased communication loss and delay within
the system, which is not conducive to practical applications.

To address this issue, we consider extending the interaction
graph to a directed connected graph. This allows us to
assess the fault-tolerance of the proposed formation scheme
under less-than-ideal communication conditions. Detailed
information will be provided in the subsequent Sec. IV-B.

IV. SIMULATION RESULTS

In this section, we will present various Laplacian functions
that satisfy the three design rules and analyze their perfor-
mance through numerical simulations.

A. Examples of Laplacian Functions

We consider several classes of completely monotonic
functions that can be used to construct admissible Laplacian
functions that meet the design rules. Here are four examples:

1) Logarithmic function: Denote f(x) = log(cx + 1)
with c > 0. The corresponding Laplacian function is
f(L) = log(cL+ IN ).

2) Exponential function: Denote f(x) = 1 − e−cx with
c > 0. The corresponding Laplacian function is
f(L) = IN − e−cI.

3) Quadratic function: Denote f(x) = 1
2x(2c − x) with

c > maxi∈V{λi}. The corresponding Laplacian func-
tion is f(L) = − 1

2L
2 + cL.

4) Fractional power: Denote f(x) = xγ with 0 < γ ≤ 1.
The corresponding Laplacian function is f(L) = Lγ .

B. Performance Analysis

1) Comparison of Laplacian functions: To compare the
effects of different Laplacian functions, we conduct simula-
tions of system (1) for 10 agents using a selection of Lapla-
cian functions introduced in Sec. IV-A. We run simulations
for different time spans using the MATLAB ode45 solver
with a variable step size (maximum step size: 0.01 s).

In our simulation, we select a cycle graph with 10 nodes
as the interaction graph, and the desired formation is a pen-
tagram. The target locations of the 10 agents are determined
based on the dimensions of the pentagram. We define R as
the circumradius of the pentagram and ρ as the circumradius
of its inner pentagon. The target locations are specified in
polar coordinates as follows:[

q∗
k

q∗
k+1

]
=

{
ρ
[
cos

(
kπ
10

)
, sin

(
kπ
10

)]⊤
, if k ∈ {1, 5, . . . }

R
[
cos

(
kπ
10

)
, sin

(
kπ
10

)]⊤
, if k ∈ {3, 7, . . . }

with

R =

√
5−

√
5

10
, ρ =

√
25− 11

√
5

10
.

The Laplacian functions considered in the simulation are
f(L) = L, f(L) = − 1

2L
2 + 5L, and f(L) = L1/5. The

initial positions q(0) of all agents are randomly generated
from the open interval (0, 1). Fig. 2 reports the trajectory of
all agents for each Laplacian function, where the network
topology edges are represented by solid black lines, and the
initial/final positions are indicated by stars/circles. Fig. 3
displays the time evolution of the formation position error
e(t) := q(t) − q∗, which includes errors in the x-axis and
y-axis. Both of these errors converge to zero. The second-
smallest eigenvalues of the three Laplacian functions are
λ2 = 2 − 2 cos(π/5) ≃ 0.3820, − 1

2λ
2
2 + 5λ2 ≃ 1.8369 and

(a) f(L) = L (b) f(L) = − 1
2
L2 + 5L (c) f(L) = L

1
5

Fig. 2: The trajectory of the 10 agents for each Laplacian function. The edges of the network topology are represented by solid black
lines, the initial/final positions are indicated by stars/circles, and the colored lines represent the trajectories produced by the agents. These
figures imply that our formation control strategy can guarantee the formation to the desired positions.
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(a) f(L) = L (b) f(L) = − 1
2
L2 + 5L (c) f(L) = L

1
5

Fig. 3: The time evolution of the formation errors for each Laplacian function. The colored lines represent the formation errors of each
agent, where Fig. 3b demonstrates the fastest convergence speed both in x- and y- directions.

Fig. 4: The combinatorial Laplacian function f(L) = 6L− 1
2
L2+

L1/5 can achieve a much faster convergence speed.
Fig. 5: In the case of a directed graph, our formation strategy
remains effective, and the desired positions are still achieved.

λ
1/5
2 ≃ 0.8249, respectively. It illustrates that the quadratic

function and matrix power contribute to an accelerated
convergence towards the desired formation, explaining the
enhanced speed of convergence observed in Figs. 2b and 3b.

2) Combinatorial Laplacian Function and Extension to
Directed Graph: However, the individual Laplacian func-
tions presented above do not take into account the combi-
nation of various types of Laplacian functions. To address
this limitation, we combine multiple Laplacian functions,
expressed as f(L) = 6L − 1

2L
2 + L1/5, and proceed with

the simulation again. As shown in Fig. 4, the convergence of
the formation error is achieved in less than 5 s, representing
a significant enhancement in convergence speed.

We also investigate the applicability of our approach to
directed graphs, where edges possess specific directions de-
noted by arrows between agents. For this purpose, we employ
the same Laplacian function as previously mentioned. Fig. 5
shows that although the convergence of formation error in
directed graphs is not as rapid as in undirected graphs, the
agents are still able to achieve the desired formation. This
verifies the efficacy and robustness of the designed formation
strategy and the Laplacian matrix functions.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

To assess the efficacy of the formation methodology in
practical scenarios, we conduct experiments using Crazyflie
nano-quadrotors, operated with the Crazyswarm2 package
[25]. The Crazyflies are equipped with the Flow Deck, which
provides localization information by continuously measuring

the distance flown and estimating the overall displacement
relative to the initial position. However, it is imperative to
acknowledge that the reliance of the Flow Deck on relative
displacement measurements may give rise to cumulative
errors over time, leading to deviations between the reported
position and the actual position of the Crazyflies.

During our experiments, we assign each Crazyflie a prede-
termined initial position and accumulate the measurements
provided by the Flow Deck in relation to said initial po-
sition. This enables the conversion from relative positions
to global positions. The interaction between the PC and the
Crazyflies is facilitated through the CrazyRadio PA, a wire-
less communication module developed by Bitcraze Inc. The
communication rate is set at 50 Hz, representing the highest
achievable communication frequency while simultaneously
managing all Crazyflies.

The overall experimental setup is illustrated in Fig. 6. The

Fig. 6: Crazyflies equipped with Flow Decks are utilized as the
agents to conduct the experiments. CrazyRadio PA communicates
with the PC at a rate of 50 Hz.
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(a) f(L) = L (b) f(L) = − 1
2
L2 + 5L (c) f(L) = L

1
5

Fig. 7: Experiments: the trajectory of the 5 Crazyflies for each Laplacian function. The edges of the network topology are represented
by solid red lines, the initial/final positions are indicated by diamonds/circles, and the colored lines represent the trajectories produced
by the Crazyflies. We can conclude that our formation control strategy remains effective in practical scenarios.

(a) f(L) = L (b) f(L) = − 1
2
L2 + 5L (c) f(L) = L

1
5

Fig. 8: Experiments: the time evolution of the formation errors. The colored lines represent the formation errors resulted by each Crazyflie,
where Fig. 8b illustrates the fastest convergence speed in x- and y- directions.

Fig. 9: Experiments: the combinatorial Laplacian function. Compared with the simulation results, it indicates that the combinatorial
Laplacian function still enables the quadrotors to converge to the desired formation with controllable speed.

formation strategy (3) is computed on a computer equipped
with an Intel Core i7 CPU operating at 1.8 GHz and 8
GB of RAM. This computer establishes a connection with
each Crazyflie via the CrazyRadio PAs to transmit control
commands. The Crazyflies, in turn, relay feedback regarding
their localization information, which is measured by the Flow
Deck, back to the computer. This information plays a crucial
role in determining the subsequent control commands.

B. Comparative Experiments

To maintain consistency with the simulation setup em-
ployed in Sec. IV, we carry out comparative experiments

using the same set of four Laplacian functions: f(L) = L,
f(L) = − 1

2L
2+5L, f(L) = L1/5, and f(L) =

(
6L− 1

2L
2+

L1/5
)
/5 (where the combinatorial Laplacian Function di-

vides the output by 5 to prevent large oscillations). Moreover,
in the experiment, we utilize 5 Crazyflies to achieve a regular
pentagon configuration, specifically the shape formed by the
five outer vertices of the expected pentagram mentioned in
Sec. IV-B. It is important to note that due to the performance
limitations of the Crazyflie, the actual flight process may
deviate from the behavior observed in the simulation.

The experimental findings are depicted in Figs. 7-9. Fig. 7
showcases the trajectories followed by the Crazyflies under
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the influence of the first three Laplacian functions, while
Fig. 8 portrays the corresponding formation errors in the
x-axis and y-axis. On the other hand, Fig. 9 presents the
same information as previously described, under the control
of the combinatorial Laplacian function. At the beginning
of the experiments, all Crazyflies ascend to a height of 0.7
m before commencing their movement while continuously
receiving control instructions from the PC.

In Fig. 7, it is evident that the desired formation can be
achieved when each of the three functions is employed. The
second-smallest eigenvalues, denoted as λ̄2, are λ̄2 ≃ 1.3820,
− 1

2 λ̄
2
2+5λ̄2 ≃ 5.9550, and λ̄

1/5
2 ≃ 1.0668, respectively, and

are associated with the convergence speed of each formation
process. Therefore, distinct differences in their convergence
behavior become apparent, which is clearly demonstrated in
Fig. 8. By virtue of the magnitude of the eigenvalues, the
order of the convergence speed can be ranked as Fig. 8b,
Fig. 8a, Fig. 8c, illustrating the varying convergence speed
of the formations, consistent with the simulation results.

Fig. 9 displays the convergence behavior of the combinato-
rial Laplacian function f(L) =

(
6L− 1

2L
2+L1/5

)
/5, which

possesses a second-smallest eigenvalue of λ̄2 ≃ 1.6808.
Through the division of the combinatorial Laplacian function
by a factor of 5, not only can excessive oscillations be
prevented, but also the magnitude of the second-smallest
eigenvalue can be effectively reduced. This observation high-
lights that the ability to manipulate the convergence speed
of the formation process can be readily accomplished by
adjusting a designated parameter in real-world scenarios.

VI. CONCLUSION

This study introduces an innovative approach to enhance
the convergence speed of MAS in formation control through
the utilization of Laplacian functions. By leveraging the
Laplacian matrix of the communication graph, we map
eigenvalues to desired positions, thereby improving the con-
vergence speed during the formation process. The effective-
ness and practical feasibility of the proposed strategy have
been verified through both simulations and experiments with
quadrotors. Further investigations could explore the perfor-
mance of the approach in larger-scale formations, obstacle-
cluttered and dynamic environments.
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